Repozytorium Instytucjonalne

Akademii Nauk Stosowanych

w Nowym Sączu

The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus

Pokaż uproszczony rekord

dc.contributor.author Francik, Sławomir
dc.contributor.author Łapczyńska-Kordon, Bogusława
dc.contributor.author Pedryc, Norbert
dc.contributor.author Szewczyk, Wojciech
dc.contributor.author Francik, Renata
dc.contributor.author Ślipek, Zbigniew
dc.date.accessioned 2023-11-10T08:38:25Z
dc.date.available 2023-11-10T08:38:25Z
dc.date.issued 2022
dc.identifier.citation Francik S, Łapczyńska-Kordon B, Pedryc N, Szewczyk W, Francik R, Ślipek Z. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus. Sustainability. 2022; 14(5):3062. https://doi.org/10.3390/su14053062 pl_PL
dc.identifier.issn 2071-1050
dc.identifier.uri http://195.117.226.27:8080/xmlui/handle/123456789/516
dc.description.abstract The aim of this paper is to develop neural models enabling the determination of biomechanical parameters for giant miscanthus stems. The static three-point bending test is used to determine the bending strength parameters of the miscanthus stem. In this study, we assume the modulus of elasticity bending and maximum stress in bending as the dependent variables. As independent variables (inputs of the neural network) we assume water content, internode number, maximum bending force value and dimensions characterizing the cross-section of miscanthus stem: maximum and minimum stem diameter and stem wall thickness. The four developed neural models, enabling the determination of the value of the modulus of elasticity in bending and the maximum stress in bending, demonstrate sufficient and even very high accuracy. The neural networks have an average relative error of 2.18%, 2.21%, 3.24% and 0.18% for all data subsets, respectively. The results of the sensitivity analysis confirmed that all input variables are important for the accuracy of the developed neural models—correct semantic models. pl_PL
dc.language.iso en pl_PL
dc.publisher MDPI pl_PL
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject biomechanical parameters pl_PL
dc.subject miscanthus stem pl_PL
dc.subject modulus of elasticity pl_PL
dc.subject maximum stress pl_PL
dc.subject bending test pl_PL
dc.subject multilayer perceptron pl_PL
dc.title The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus pl_PL
dc.type Article pl_PL


Pliki tej pozycji

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution 4.0 International Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution 4.0 International