Repozytorium Instytucjonalne

Akademii Nauk Stosowanych

w Nowym Sączu

Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change

Pokaż uproszczony rekord

dc.contributor.author Gaska, Krzysztof
dc.contributor.author Generowicz, Agnieszka
dc.contributor.author Gronba-Chyła, Anna
dc.contributor.author Ciuła, Józef
dc.contributor.author Wiewiórska, Iwona
dc.contributor.author Kwaśnicki, Paweł
dc.contributor.author Mala, Marcin
dc.contributor.author Chyła, Krzysztof
dc.date.accessioned 2023-09-21T09:45:52Z
dc.date.available 2023-09-21T09:45:52Z
dc.date.issued 2023
dc.identifier.citation Citation: Gaska, K.; Generowicz, A.; Gronba-Chyła, A.; Ciuła, J.; Wiewiórska, I.; Kwa´snicki, P.; Mala, M.; Chyła, K. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change. Energies 2023, 16, 5732. https://doi.org/10.3390/ en16155732 pl_PL
dc.identifier.issn 1996-1073
dc.identifier.uri http://195.117.226.27:8080/xmlui/handle/123456789/490
dc.description.abstract Combined heat and power generation is the simultaneous conversion of primary energy (in the form of fuel) in a technical system into useful thermal and mechanical energy (as the basis for the generation of electricity). This method of energy conversion offers a high degree of efficiency (i.e., very efficient conversion of fuel to useful energy). In the context of energy system transformation, combined heat and power (CHP) is a fundamental pillar and link between the volatile electricity market and the heat market, which enables better planning. This article presents an advanced model for the production of fuel mixtures based on landfill biogas in the context of energy use in CHP units. The search for optimal technological solutions in energy management requires specialized domain-specific knowledge which, using advanced algorithmic models, has the potential to become an essential element in real-time intelligent ICT systems. Numerical modeling makes it possible to build systems based on the knowledge of complex systems, processes, and equipment in a relatively short time. The focus was on analyzing the applicability of algorithmic models based on artificial intelligence implemented in the supervisory control systems (SCADA-type systems including Virtual SCADA) of technological processes in waste management systems. The novelty of the presented solution is the application of predictive diagnostic tools based on multithreaded polymorphic models, supporting making decisions that control complex technological processes and objects and solving the problem of optimal control for intelligent dynamic objects with a logical representation of knowledge about the process, the control object, and the control, for which the learning process consists of successive validation and updating of knowledge and using the results of this updating to determine control decisions. pl_PL
dc.language.iso en pl_PL
dc.publisher MDPI pl_PL
dc.rights Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.pl
dc.subject landfill gas pl_PL
dc.subject neural classifier pl_PL
dc.subject model predictive control MPC pl_PL
dc.subject technological process optimization pl_PL
dc.subject combined heat and power (CHP) pl_PL
dc.title Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change pl_PL
dc.type Article pl_PL


Pliki tej pozycji

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0) Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)