Link lub cytat. http://195.117.226.27:8080/xmlui/handle/123456789/516
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorFrancik, Sławomir
dc.contributor.authorŁapczyńska-Kordon, Bogusława
dc.contributor.authorPedryc, Norbert
dc.contributor.authorSzewczyk, Wojciech
dc.contributor.authorFrancik, Renata
dc.contributor.authorŚlipek, Zbigniew
dc.date.accessioned2023-11-10T08:38:25Z
dc.date.available2023-11-10T08:38:25Z
dc.date.issued2022
dc.identifier.citationFrancik S, Łapczyńska-Kordon B, Pedryc N, Szewczyk W, Francik R, Ślipek Z. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus. Sustainability. 2022; 14(5):3062. https://doi.org/10.3390/su14053062pl_PL
dc.identifier.issn2071-1050
dc.identifier.urihttp://195.117.226.27:8080/xmlui/handle/123456789/516
dc.description.abstractThe aim of this paper is to develop neural models enabling the determination of biomechanical parameters for giant miscanthus stems. The static three-point bending test is used to determine the bending strength parameters of the miscanthus stem. In this study, we assume the modulus of elasticity bending and maximum stress in bending as the dependent variables. As independent variables (inputs of the neural network) we assume water content, internode number, maximum bending force value and dimensions characterizing the cross-section of miscanthus stem: maximum and minimum stem diameter and stem wall thickness. The four developed neural models, enabling the determination of the value of the modulus of elasticity in bending and the maximum stress in bending, demonstrate sufficient and even very high accuracy. The neural networks have an average relative error of 2.18%, 2.21%, 3.24% and 0.18% for all data subsets, respectively. The results of the sensitivity analysis confirmed that all input variables are important for the accuracy of the developed neural models—correct semantic models.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectbiomechanical parameterspl_PL
dc.subjectmiscanthus stempl_PL
dc.subjectmodulus of elasticitypl_PL
dc.subjectmaximum stresspl_PL
dc.subjectbending testpl_PL
dc.subjectmultilayer perceptronpl_PL
dc.titleThe Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteuspl_PL
dc.typeArticlepl_PL
Występuje w kolekcjach:Artykuły Naukowe

Pliki tej pozycji:
Plik Opis WielkośćFormat 
sustainability-14-03062-v2.pdf9,51 MBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi