Link lub cytat. http://195.117.226.27:8080/xmlui/handle/123456789/516
Tytuł: The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus
Autorzy: Francik, Sławomir
Łapczyńska-Kordon, Bogusława
Pedryc, Norbert
Szewczyk, Wojciech
Francik, Renata
Ślipek, Zbigniew
Słowa kluczowe: biomechanical parameters
miscanthus stem
modulus of elasticity
maximum stress
bending test
multilayer perceptron
Data wydania: 2022
Wydawca: MDPI
Cytat: Francik S, Łapczyńska-Kordon B, Pedryc N, Szewczyk W, Francik R, Ślipek Z. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus. Sustainability. 2022; 14(5):3062. https://doi.org/10.3390/su14053062
Abstract: The aim of this paper is to develop neural models enabling the determination of biomechanical parameters for giant miscanthus stems. The static three-point bending test is used to determine the bending strength parameters of the miscanthus stem. In this study, we assume the modulus of elasticity bending and maximum stress in bending as the dependent variables. As independent variables (inputs of the neural network) we assume water content, internode number, maximum bending force value and dimensions characterizing the cross-section of miscanthus stem: maximum and minimum stem diameter and stem wall thickness. The four developed neural models, enabling the determination of the value of the modulus of elasticity in bending and the maximum stress in bending, demonstrate sufficient and even very high accuracy. The neural networks have an average relative error of 2.18%, 2.21%, 3.24% and 0.18% for all data subsets, respectively. The results of the sensitivity analysis confirmed that all input variables are important for the accuracy of the developed neural models—correct semantic models.
URI: http://195.117.226.27:8080/xmlui/handle/123456789/516
ISSN: 2071-1050
Występuje w kolekcjach:Artykuły Naukowe

Pliki tej pozycji:
Plik Opis WielkośćFormat 
sustainability-14-03062-v2.pdf9,51 MBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi