Link lub cytat. http://195.117.226.27:8080/xmlui/handle/123456789/490
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorGaska, Krzysztof
dc.contributor.authorGenerowicz, Agnieszka
dc.contributor.authorGronba-Chyła, Anna
dc.contributor.authorCiuła, Józef
dc.contributor.authorWiewiórska, Iwona
dc.contributor.authorKwaśnicki, Paweł
dc.contributor.authorMala, Marcin
dc.contributor.authorChyła, Krzysztof
dc.date.accessioned2023-09-21T09:45:52Z
dc.date.available2023-09-21T09:45:52Z
dc.date.issued2023
dc.identifier.citationCitation: Gaska, K.; Generowicz, A.; Gronba-Chyła, A.; Ciuła, J.; Wiewiórska, I.; Kwa´snicki, P.; Mala, M.; Chyła, K. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change. Energies 2023, 16, 5732. https://doi.org/10.3390/ en16155732pl_PL
dc.identifier.issn1996-1073
dc.identifier.urihttp://195.117.226.27:8080/xmlui/handle/123456789/490
dc.description.abstractCombined heat and power generation is the simultaneous conversion of primary energy (in the form of fuel) in a technical system into useful thermal and mechanical energy (as the basis for the generation of electricity). This method of energy conversion offers a high degree of efficiency (i.e., very efficient conversion of fuel to useful energy). In the context of energy system transformation, combined heat and power (CHP) is a fundamental pillar and link between the volatile electricity market and the heat market, which enables better planning. This article presents an advanced model for the production of fuel mixtures based on landfill biogas in the context of energy use in CHP units. The search for optimal technological solutions in energy management requires specialized domain-specific knowledge which, using advanced algorithmic models, has the potential to become an essential element in real-time intelligent ICT systems. Numerical modeling makes it possible to build systems based on the knowledge of complex systems, processes, and equipment in a relatively short time. The focus was on analyzing the applicability of algorithmic models based on artificial intelligence implemented in the supervisory control systems (SCADA-type systems including Virtual SCADA) of technological processes in waste management systems. The novelty of the presented solution is the application of predictive diagnostic tools based on multithreaded polymorphic models, supporting making decisions that control complex technological processes and objects and solving the problem of optimal control for intelligent dynamic objects with a logical representation of knowledge about the process, the control object, and the control, for which the learning process consists of successive validation and updating of knowledge and using the results of this updating to determine control decisions.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.rightsUznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.pl
dc.subjectlandfill gaspl_PL
dc.subjectneural classifierpl_PL
dc.subjectmodel predictive control MPCpl_PL
dc.subjecttechnological process optimizationpl_PL
dc.subjectcombined heat and power (CHP)pl_PL
dc.titleArtificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Changepl_PL
dc.typeArticlepl_PL
Występuje w kolekcjach:Artykuły Naukowe

Pliki tej pozycji:
Plik Opis WielkośćFormat 
21_Energies_Ciuła_2023.pdf2,08 MBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi